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QTL mapping 
Quantitative trait loci (QTL) analysis has proved as a powerful technique to elucidate complex trait architecture. Over the past two decades, recent advances in marker technology and statistical methods have allowed the identification of many QTLs related to seed size and shape traits. The USDA Soybean Genome Database (SoyBase,http: //www.soybase.org) presently document more than 400 QTLs for seed size and shape, and the majority of them are not confirmed (http://www.soybase.org). The previous studies used mostly low-resolution and low-density molecular markers such as simple sequence repeats (SSRs) that often result in larger confidence intervals and make the use of these QTLs less effective in crop improvement [3,5,17,18]. For example, Mian et al. [19] reported 16 QTLs for seed size and shape on 12 different chromosomes of soybean. Hoeck et al. [20] identified 27 QTLs associated with seed size distributed on 16 soybean chromosomes, and Li et al. [21] detected three QTLs for SL on Chr07, Chr13, and Chr16. Lü et al. [18] identified 19 main-effect QTLs (M-QTLs) and three epistatic-effect QTLs (E-QTLs) for SL on eight chromosomes. Xie et al. [22] finely mapped QTLs for soybean seed size traits on Chr06 in the recombinant inbred line (RIL) population derived from a cross between Lishuizhongzihuang and Nannong493-1. Likewise, Che et al. [17] identified 16 QTLs for seed shape, distributed on seven linkage groups in soybeans by using the RIL population. Hu et al. [7] mapped 10 QTLs for seed shape on six chromosomes in soybeans. However, only a few yield-related stable QTLs have been identified in different genetic backgrounds and environments [23]. Hence, it is vital to identify and validate QTLs in multiple backgrounds and environments for their potential use in marker-assisted breeding (MAB). Lastly, the earlier studies mostly focused on the identification of main-effect QTLs for seed size/shape in soybean; however, minimal efforts have been made to understand complex genetic interaction effects, such as epistasis and environment effects [24–26]. 

The inheritance of quantitative traits varies from simple to complex; however, the phenotypic variation of most quantitative traits is complex, governed by many factors [27]. In addition to main-effect QTLs, phenotypic variation (PV) of complex traits is also governed by QTL by QTL (epistatic) and QTL by environment (QTL × E) interactions, which contribute significantly to complex trait variations [28]. By considering these QTL interactions in the QTL mapping model of complex traits will lead to increased precision of QTL mapping [29]. Therefore, these factors cannot be considered only as the main obstacles to dissect the genetic architecture of complex traits, but they also affect the accuracy of breeding value estimation, and thus, hinder the efficiency of breeding programs. Hence, it is imperative to consider these factors while dissecting the genetic basis of complex traits and their uses in improving plant performance. In recent years, epistatic and QTL × E interaction effects are under consideration in several crop species, including soybeans, for QTL mapping [30]. Therefore, extensive efforts are required to study such QTL interaction effects for their effective exploitation in soybean breeding. 
Development of high-density genetic maps, and their use in the detection of QTLs/genes, have allowed a detailed and 
broader understanding of the genetic basis underlying complex quantitative traits. Furthermore, the analysis of genes has 
partitioned the related traits into individual Mendelian factors [31]. Nevertheless, limited reports are targeting the 
mapping of QTLs related to seed size and shape based on the high-density map in different genetic backgrounds. 
Besides, to mine candidate genes for seed size and shape in soybeans, negligible efforts were made. By keeping the 
above in view, the present study has used a high-density linkage map of two RIL populations, viz., ZY and K3N, 
evaluated in multiple environments to identify main and epistatic-effect QTLs, as well as their interactions with the 
environment, to mine candidate genes for seed size and shape in soybeans. These results will be helpful in MAB for 
developing soybean varieties with improved yield and quality,   as well as to clone underlying genes for seed size and 
shape in soybean. 
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What statistical method would you use to analyze complex traits? QTL analysis is particularly helpful, 
bridging the gap between genes and the phenotypic traits that result from them. 

 
Quantitative trait locus (QTL) analysis is a statistical method that links two types of information— 
phenotypic data (trait measurements) and genotypic data (usually molecular markers)—in an attempt 
to explain the genetic basis of variation in complex traits (Falconer & Mackay, 1996; Kearsey, 1998; 
Lynch & Walsh, 1998). QTL analysis allows researchers in fields as diverse as agriculture, evolution, 
and medicine to link certain complex phenotypes to specific regions of chromosomes. The goal of this 
process is to identify the action, interaction, number, and precise location of these regions. 
How Is QTL Analysis Conducted? 

In order to begin a QTL analysis, scientists require two things. First, they need two or more strains  of 
organisms that differ genetically with regard to the trait of interest. For example, they might select lines 
fixed for different alleles influencing egg size (one large and one small). Second, researchers also require 
genetic markers that distinguish between these parental lines. Molecular markers are preferred for 
genotyping, because these markers are unlikely to affect the trait of interest. Several types of markers are 
used, including single nucleotide polymorphisms (SNPs), simple sequence repeats (SSRs, or 
microsatellites), restriction fragment length polymorphisms (RFLPs), and transposable element positions 
(Casa et al., 2000; Vignal et al., 2002; Gupta & Rustgi, 2004; Henry, 2006). Then, to carry out the QTL 
analysis, the parental strains are crossed, resulting  in heterozygous (F1) individuals, and these individuals 
are then crossed using one of a number of different schemes (Darvasi, 1998). Finally, the phenotypes and 
genotypes of the derived (F2) population are scored. Markers that are genetically linked to a QTL 
influencing the trait of interest will segregate more frequently with trait values (large or small egg size in 
our example), whereas unlinked markers will not show significant association with phenotype (Figure 1). 
 
For traits controlled by tens or hundreds of genes, the parental lines need not actually be different for the 
phenotype in question; rather, they must simply contain different alleles, which are then reassorted by 
recombination in the derived population to produce a range of phenotypic values. 
Consider, for example, a trait that is controlled by four genes, wherein the upper-case alleles increase the 
value of the trait and the lower-case alleles decrease the value of the trait. Here, if the effects of the alleles of 
the four genes are similar, individuals with the AABBccdd and aabbCCDD genotypes might have roughly the 
same phenotype. The members of the F1 generation 
(AaBbCcDd) would be invariant and would have an intermediate phenotype. However, the F2 
generation, or the progeny from a backcross of an F1 individual with either parent, would be variable. 
The F2 offspring would have anywhere from zero to eight upper-case alleles; the backcross progeny 
would have anywhere from four to eight upper-case alleles. 
 
A principal goal of QTL analysis has been to answer the question of whether phenotypic differences are 
primarily due to a few loci with fairly large effects, or to many loci, each with minute effects. It appears 
that a substantial proportion of the phenotypic variation in many 
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quantitative traits can be explained with few loci of 
large effect, with the remainder due to numerous 
loci of small effect (Remington & Purugganan, 
2003; Mackay, 2004;  Roff,  2007). For example, in 
domesticated rice (Oryza sativa), studies of 
flowering time have identified six QTL; the sum of 
the effects of the top five QTL  explains 84% of the 
variation in this trait (Yano et al., 1997; Yamamoto 
et al., 1998, 2000). Once QTL have been identified, 
molecular techniques can be employed to narrow 
the QTL down to candidate genes (a process 
described later in this article). One important 
emerging trend in these analyses is the prominent 
role of regulatory genes, or genes that code for 
transcription  factors and other signaling  proteins.  
For instance, in rice, three flowering time QTL have 
been identified at the molecular level, and all of 
these loci encode regulatory  proteins  known from 
studies of Arabidopsis thaliana (Remington  & 
Purugganan, 2003). 
A meta-analysis of extensive data in pigs and  dairy 
found that QTL effects were skewed  towards fewer 
QTL with large effects (Hayes and Goddard 2001). 
Orr (2001)  addresses  the question of defining and 
distinguishing between "large" and "small" effects. 
As with all statistical analyses, sample size is a 
critical factor. Small sample sizes may fail to detect 
QTL of small  effect and result in an overestimation 
of effect size of those QTL that are identified (Beavis   
1994, 1997). This is known at the "Beavis effect". 
Otto and Jones (2000) suggested a method for 
comparing detected QTL to a distribution of 
expected values in order to estimate how many loci 
might have been missed. Recent studies have taken 
these biases into account (e.g., Albert et al. 2007). 
Another consistent trend in  looking  at  QTL across 
traits and taxa is that phenotypes are frequently 
affected by a variety of interactions (e.g., genotype-
by-sex, genotype-by- environment, and epistatic 
interactions between QTL), although not all QTL 
studies are designed  to detect such interactions. 
Indeed, several complex traits in the fruit fly 
Drosophila melanogaster have been extensively 
analyzed,  and this research has indicated that the 
effects of 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Quantitative trait locus mapping. 
a) Quantitative trait locus (QTL) mapping 
requires parental strains (red and blue plots) 
that differ genetically for the trait, such as lines 
created by divergent artificial selection. 
b) The parental lines are crossed to create F1 
individuals (not shown), which are then crossed 
among themselves to create an F2,   or crossed 
to one of the parent lines to  create backcross 
progeny. Both of these crosses produce 
individuals or strains that contain different 
fractions of the genome of each parental line. 
The phenotype for each of these recombinant 
individuals or lines is assessed, as is the 
genotype of markers that vary between the 
parental strains. c) Statistical techniques such 
as composite 
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such interactions are common (Mackay, 2001, 
2004). For example, detailed examination of life 
span in D. melanogaster has revealed that many 
genes influence longevity (Nuzhdin et al., 2005; 
Wilson et al., 2006). In addition, significant 
dominance, epistatic, and genotype-by- environment 
effects have also been reported for life span (Leips 
& Mackay, 2002; Forbes et al., 2004). Similarly, 
QTL studies examining plant architecture 
differences between maize and teosinte have 
repeatedly shown significant epistatic interactions 
(Doebley et al., 1995; Lauter & Doebley, 2002). 
These same types of interactions have additionally 
been demonstrated in soybeans (Lark et al., 1995). 
It is also possible to perform QTL analysis on 
unmanipulated natural populations using hybrids, 
sibships (half-sibling or full-sibling families), 
and/or pedigree information (Lynch & Walsh, 
1998; Mott et al., 2000; Slate, 2005). 
Diverse ecological and evolutionary questions 

interval mapping evaluate the probability that a 
marker or an interval between two markers is 
associated with a QTL affecting the trait, while 
simultaneously controlling for the effects of 
other markers on the trait. The results of such an 
analysis are presented as a plot of the test 
statistic against the chromosomal map position, 
in recombination units (cM). Positions of the  
markers  are shown as triangles. The horizontal 
line marks the significance threshold. Likelihood 
ratios above this line are formally significant, 
with the best estimate of QTL positions given by 
the chromosomal position corresponding to the 
highest significant likelihood ratio. Thus, the 
figure shows five possible QTL, with the best-
supported QTL around 10 and 60 cM. 
Copyright 2001 Nature Publishing Group, 
Mackay, T. F. C.,Quantitative trait loci in 
Drosophila, Nature Reviews Genetics 2, 11-
20 



 

 

have been addressed using these tools. For example, Shaw and colleagues (2007) identified  multiple 
QTL associated with differences in male calling song between two closely related species of the 
Hawaiian cricket, a trait involved in rapid speciation. Similarly, Baack and colleagues (2008) addressed 
the question of possible gene flow between domesticated crops and their wild relatives in contrasting 
environments using crop-sunflower hybrids. Environmental and conservation  questions have also been 
explored. For instance, Weinig and colleagues (2007) examined various loci that influence invasive 
success by exotic species, while Pauwels and colleagues (2008)  reviewed questions surrounding QTL 
for tolerance to heavy metal exposure in plants that could contribute to phytoremediation of polluted 
soils. 
Caveats and Qualifications of QTL Analysis 

Like most methods, QTL analysis is not without limitations. For instance, QTL studies require very 
large sample sizes, and they can only map those differences that are captured between the initial 
parental strains. Because these strains are unlikely to contain segregating alleles of large effect at every 
locus contributing to variation in natural populations, some loci will remain undetected. 
Furthermore, the specific alleles that do segregate, particularly in inbred lines, may not be relevant to 
natural populations. Other alleles at these same loci are likely to be of interest, however. Thus, the goal 
for many studies is to identify loci rather than particular alleles. (One notable area of exception involves 
applied studies in medicine and agriculture, which are often interested in  specific segregating alleles). 
The number of times that individual genes have been identified following a QTL mapping study 
remains small. Indeed, Roff (2007) lists examples of quantitative traits in which single genes have 
major effects and their molecular basis has been studied, and he notes that this number is modest 
relative to the effort invested in QTL studies. One reason for this discrepancy is that many QTL map 
to regions of the genome of perhaps 20 centimorgans (cM) in length, and these regions often contain 
multiple loci that influence the same trait (see, however, Price, 2006). Moreover, identifying the 
actual loci that affect a quantitative trait involves demonstrating causality using 
techniques like positional cloning (see Clee et al., 2006) followed by targeted gene replacement  (see 
Sullivan et al., 1997). Frequently, the quest for individual genes within a QTL is assisted by the 
identification of a priori candidate genes using classical reverse genetics or bioinformatics. A functional 
relationship between the candidate gene and the QTL must then be demonstrated, such  as by using 
functional complementation (the addition of wild-type complementary DNA from the gene in question 
into the nucleus to rescue a loss-of function mutation or to produce an     alternative phenotype; see, for 
example, Frary et al., 2000). Other techniques, such as deficiency mapping (deletion mapping), are 
available for specific organisms, including Drosophila (Mackay, 2001). 
The Future of QTL Mapping 

New permutations of QTL mapping build upon the utility of the original premise: locus discovery     by 
co-segregation of traits with markers. Now, however, the definition of a trait can be broadened beyond 
whole-organism phenotypes to phenotypes such as the amount of RNA transcript from a particular gene 
(expression or eQTL; Schadt et al., 2003) or the amount of protein produced from    a particular gene 
(protein QTL or PQL; Damerval et al., 1994). QTL mapping works in these   contexts because these 
phenotypes are polygenic, just like more traditional organismal   phenotypes, such as yield in corn. For 
example, transcript abundance is controlled not just by cis- acting sequences like the promoter, but also 
by potentially unlinked, trans-acting transcription factors. Similarly, protein abundance is controlled by 
"local" variation at the coding gene itself, and by "distant" variation mapping to other regions of the 



 

 

genome. Local variation is likely to be composed of cis variants controlling transcript levels (though the 
correlation between transcript level and protein abundance is often quite low, so this may represent a 
minority of cases; see Foss  et al., 2007). Other local mechanisms might include polymorphisms for the 
stability or regulation    of the protein. In contrast, distant variation could include upstream regulation 
control regions. 
Beyond these examples, further extension of QTL analysis includes mapping the contribution of 
imprinting to size-related traits (Cheverud et al., 2008), and other adaptations of QTL mapping will 
no doubt follow. 
Historically, the availability of adequately dense markers (genotypes) has been the limiting step for QTL 
analysis. However, high-throughput technologies and genomics have begun to overcome this barrier. 
Thus, the remaining limitations in QTL analysis are now predominantly at the level of phenotyping, 
although the use of genomic and proteomic data as phenotypes circumvents this challenge to some extent. 
Genome-wide association studies (GWAS) are becoming increasingly popular in genetic research, and 
they are an excellent complement to QTL mapping. Whereas QTL contain many linked genes, which 
are then challenging to separate, GWAS produce many unlinked individual genes or even nucleotides, 
but these studies are riddled with large expected numbers of false positives. Though GWAS remain 
limited to organisms with genomic resources, combining the two techniques can  make the most of 
both approaches and help provide the ultimate deliverable: individual genes or even nucleotides that 
contribute to the phenotype of interest. 
Indeed, combining different QTL techniques and technologies has great promise. For example, Hubner 
and colleagues (2005) used data on gene expression in fat and kidney tissue from two previously 
generated, recombinant rat strains to study hypertension. Alternatively, samples   adapted to different 
environments may be compared, or other populations of interest might be selected for expression 
analysis. This approach permits measurement of hundreds or even    thousands of traits simultaneously. 
Differences in expression may be co-localized with phenotypic QTL that have been previously 
determined to create manageable lists of positional candidate genes (Wayne & McIntyre, 2002). Other 
interesting questions concerning gene regulation can be addressed by combining eQTL and QTL, 
such as the relative contributions of cis-regulatory elements versus trans-regulatory elements. 
Regarding hypertension, Hubner et al. (2005) identified 73 candidate genes deemed suitable for 
testing in human populations, and many of the most highly linked eQTL were regulated in cis. These 
integrated approaches will become more common, and they promise a deeper understanding of the 
genetic basis of complex traits, including disease (Hubner et al., 2006). Integrating phenotypic QTL 
with protein QTL can also give investigators a more direct link between genotype and phenotype via 
co-localization of candidate protein abundance with a phenotypic QTL (De Vienne et al., 1999). Still 
more kinds of data can be integrated with QTL mapping for a "total information" genomics approach 
(e.g., eQTL, proteomics, and SNPs) (Stylianou et al., 2008). 
QTL studies have a long and rich history and have played important roles in gene cloning and 
characterization; however, there is still a great deal of work to be done. Existing data on model 
organisms need to be expanded to the point at which meta-analysis is feasible in order to  document 
robust trends regarding genetic architecture. Data generated by lab-based QTL studies can also be used 
to direct and inform other efforts, such as population genomics, wherein a large number of molecular 
markers are scored in the attempt to identify targets of selection and thus genes underlying ecologically 
important traits (Stinchcombe & Hoekstra, 2008). Furthermore, QTL studies can inform functional 
genomics, in which the goal is to characterize allelic variation and how it influences the fitness and 



 

 

function of whole organisms. Thus, although the map between genotype and phenotype remains 
difficult to read, QTL analysis and a variety of associated innovations will likely continue to provide 
key landmarks. 


